Emil Khisamutdinov

Emil Khisamutdinov

Assistant Professor of Chemistry

Phone:765-285-8084

Room:CP 305N


Postdoctoral Scholar, College of Pharmacy, University of Kentucky, Lexington, KY
Ph.D., Bowling Green State University, Bowling Green, OH
M.S., National University of Uzbekistan, Tashkent, Uzbekistan
B.S., National University of Uzbekistan. Tashkent, Uzbekistan

Related Link:
Emil Research Group

Research summary:

Our laboratory is focused on RNA nanotechnology and involves the design, construction, and application of RNA based nanoparticles. RNA nanotechnology is a vigorous, and rapidly emerging with strong potential for application in diverse fields from nanoelectronics to nanomedicine. RNA molecules not only encode genetic information, but they actively participate in various intracellular functions including gene expression regulation through sophisticated mechanisms; thereby expanding its traditional role as a genetic messenger and revealing it as a functionally versatile molecule. Small interfering and microRNAs (siRNAs and miRNAs, respectively), ribozymes, rib switches, ribosomal RNA, transport RNA (tRNA) are only a few examples of non-coding RNA (ncRNA) elements that play diverse roles in mediating gene expression. To achieve their functions, RNAs fold into a complex three dimensional (3D) architectures. Inspired by these natural 3D RNA elements, the development of artificial or reengineered RNA nanoparticles that will efficiently function in variety of intracellular processes as “smart” nanodevises is our main research interest.

Projects:

Our research projects are highly interdisciplinary and combine chemistry, biology, physics and material science. Our ultimate goal is the development of new strategies for controlled self-assembly of functional RNA nanoparticles with implications in areas as diverse as nanoelectronics, biosencing, and nanomedicine. Our projects provide students with extensive training in RNA 3D design and with various biochemical techniques including DNA/RNA labeling, PCR, RNA synthesis (in vitro transcription), gel electrophoresis, protein over expression and isolation, Fluorescent and UV- Vis spectroscopy, UV-melting, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM).

Selected Publications:  

M. Brittany Johnson, Justin R. Halman, Emily Satterwhite, Alexey V. Zakharov, My N. Bui, Kheiria Benkato, Victoria Goldsworthy, Taejin Kim, Enping Hong, Marina A. Dobrovolskaia, Emil F. Khisamutdinov*, Ian Marriott, Kirill A. Afonin. Programmable Nucleic Acid-based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling. Small. 2017, 13(42), (doi: 10.1002/smll.201701255)

My N. Bui, Brittany M Johnson, Mathew Viard, Emily Satterwhite, Angelica N. Martins, Zhihai Li, Ian Marriott, Kirill Afonin, Emil F. Khisamutdinov*. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology, Nanomedicine. 2017, 13 (3), pp. 1549-9634 (doi: 10.1016/j.nano.2016.12.018)

Emil F. Khisamutdinov, Daniel L. Jasinski, Hui Li, Kaiming Zhang, Wah Chiu, and Peixuan Guo. Fabrication of RNA 3D Nanoprism for Loading and Protection of Small RNAs and Model Drugs. Adv Mater. 2016, 28(45) pp. 10079-10087. (doi: 10.1002/adma.201603180)

Seth G. Abels and Emil F. Khisamutdinov*. Nucleic Acid Computing and its Potential to Transform Silicon-Based Technology. DNA and RNA nanotechnology journal 2015, 2(1) pp. 13-22 (DOI: 10.1515/rnan-2015-0003)

Emil F. Khisamutdinov, Hui Li, Daniel L. Jasinski, Jiao Chen, Jian Fu, and Peixuan Guo. Enhancing Immunomodulation on Innate Immunity by Shape Transition Among RNA Triangle, Square, and Pentagon Nanovehicles. Nucleic Acids Research, 2014, 42(15):9996-10004. (doi: 10.1093/nar/gku516).

Emil F. Khisamutdinov, Daniel L. Jasinski, and Peixuan Guo. RNA as a Boiling-Resistant Anionic Polymer Material To Build Robust Structures with Defined Shape and Stoichiometry. ACS Nano, 2014, 8 (5), pp 4771–4781. (doi: 10.1021/nn5006254) (editor's choice).

Book Chapters:

Kheiria Benkato, Ben O’Brien, My N. Bui, Daniel Jasinski, Peixuan Guo, and Emil F. Khisamutdinov*. Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition. In Methods in Molecular Biology. Edited by Eckart Bindewald and Bruce Shapiro, Springer 2017, Vol: 1632; pp 123-133. (doi: 10.1007/978-1-4939-7138-1_8)

Emil F. Khisamutdinov*, My N. Bui, Daniel Jasinski, Zhengyi Zhao, Zheng Cui, Peixuan Guo. Simple Method for Constructing RNA Triangle, Square, Pentagon by Tuning Interior RNA 3WJ Angle from 60° to 90° or 108°. In RNA Scaffolds: Methods and Protocols, Methods in Molecular Biology edited by L. Ponchon. Springer, 2015, Vol: 1316; pp181-193. (doi: 10.1007/978-1-4939-2730-2_15).

Neocles B. Leontis and Emil F. Khisamutdinov. RNA Nanotechnology: Learning from Biologically active RNA Nano-machines. In “RNA Nanotechnology and Therapeutics” edited by P. Guo and F. Haque. CRC press, Taylor and Francis Group, 2013, Chapter #4; 73-108.


Course Schedule
Course No. Section Times Days Location
Principles of Bioche 463 1 1230 - 1345 T R CP, room 257
Biochemistry Lab Tec 465 1 1400 - 1650 T CP, room 449
Biochemistry Lab Tec 465 1 1600 - 1650 M CP, room 257
Biochemistry Lab Tec 465 2 1300 - 1550 F CP, room 449
Biochemistry Lab Tec 465 2 1600 - 1650 M CP, room 257
Principles of Bioche 563 1 1230 - 1345 T R CP, room 257
Biochemistry Lab Tec 465 3 1230 - 1520 R CP, room 449
Biochemistry Lab Tec 465 3 1600 - 1650 M CP, room 257