PHYC 570 Introductory Mathematical Physics 1

Course Description
The application of mathematical techniques to the formulation and solution of physical problems, particularly those which occur in classical mechanics, thermodynamics, electromagnetic theory and quantum mechanics. Topics include computer algebra system and applications. (3 credit hours)

Prerequisite: PHYC 122 and 260 or permission of department chairperson.

Not open to the student who has credit in PHYC 370.

Course Objective
To impart to the physics student:

An appreciation of the overall unity of the underlying mathematical methods in classical and modern physics.

Familiarity with frequently encountered mathematical methods, equations, functions, and solutions occurring in advanced physics courses.

Skill in the techniques of problem formulation and solution in mathematical physics.

Course Rationale
To familiarize the student with mathematical physics as a method for solving a great variety of problems in the physical sciences.

To illustrate the mathematical techniques with examples from theory and experiments in physics.

By providing an emphasis on practice in problem solving, the students will develop the experience and confidence to be able to apply the mathematical problem-solving techniques in a variety of applications.

Course Content, Format, and Bibliography

Content
Vector analysis, with applications to mechanics and potential theory
 Review of vector algebra -vector mechanics
 Vector calculus
 Vector differentiation: gradient, divergence, curl, the del operator
 Vector integration: line, surface, volume integrals, Gauss's, Stokes's, Helmholtz' theorems; applications to mechanics and potential theory
Curved Coordinates and Tensors
Circular Cylindrical Coordinates
Spherical Polar Coordinates
Sensor Analysis and differential operators
Determinants and Matrices
 Determinants
 Determinant algebra
 Systems of linear equations; electrical circuit analysis by determinants
Matrice
 Orthogonal, hermitian, unitary matrices
 Diagonalization of matrices; the simple eigenvalue problem in physics
 Matrices in mechanics: the moment of inertia problem
Infinite Series
 Convergence tests – Uniform and absolute convergence
 Alternating series and Series of functions
 Taylor’s expansion – Binomial theorem
 Power series – Uniqueness theorem
Functions of a complex variable
 Review of complex algebra
 Cauchy-Riemann condition – analytic functions
 Cauchy’s theorem and formula
 Conformal mapping – basic properties and harmonic conjugates
 Calculus of residues and poles

Format

Lectures and problem solving.

This course is taught as a dual undergraduate/graduate course. Students will be required to complete activities appropriate for the level of the course in which they are enrolled. Student performance on homework, quiz, and exams will be evaluated using different standards for undergraduate and graduate students.

Extra assignments for graduate level counterpart of taught/with course:

 Graduate students in taught/with course will be assigned one or more of the following, at the instructor's discretion, commensurate with the higher requirements of the graduate component as compared with the undergraduate component:

 Extra problem assignments
 Course term paper
Individual experimental project
Extra or different examination requirements
Oral examination
Class lecture on assigned topic
Assigned readings/report on the literature

Bibliography