

Feasibility of A Ball State Wind Turbine

Luke Pentecost

Advisor: Dr. Eric Hedin

Department of Physics & Astronomy, Ball State University

Graphs For Turbines, Wind Speed Distribution and Energy Distribution

Ball State PHYS 483

Introduction

The original question asked for this research; is it feasible for ball state to invest in a wind turbine. That question itself is the basis behind this research.

- The data used in this research spans two years,
 From February 26, 2013, to February 25, 2015
- Differing turbine heights, power curves, and prices all affect the feasibility of a turbine.
- Analysis of the differing turbines allows to optimally choose which the best turbine.
- The feasibility in this study was ultimately determined by how many years to pay off the turbine.

Apparatus & Experimental Details

For this experiment a specific environment is needed:

- The environment needed for a turbine should be away from larger buildings and most commercial settings as to avoid turbulence.
- For the wind data to be collected the data must be obtained from an area that is high enough to get pure wind data.
- Wind data in this experiment was collected from a 15m pole.
- That data can then be applied for these turbines:

The Turbines Considered

Turbine 1: VESTAS 126 – 3.3MW IEC IIA – 137m Tower

Turbine 2: GE – 2.5MW – 139m Tower

Turbine 3: Nordex – N117/2500kW – 91m Tower

Turbine 4: Repower – 3.2MW – 114 – 143m Tower

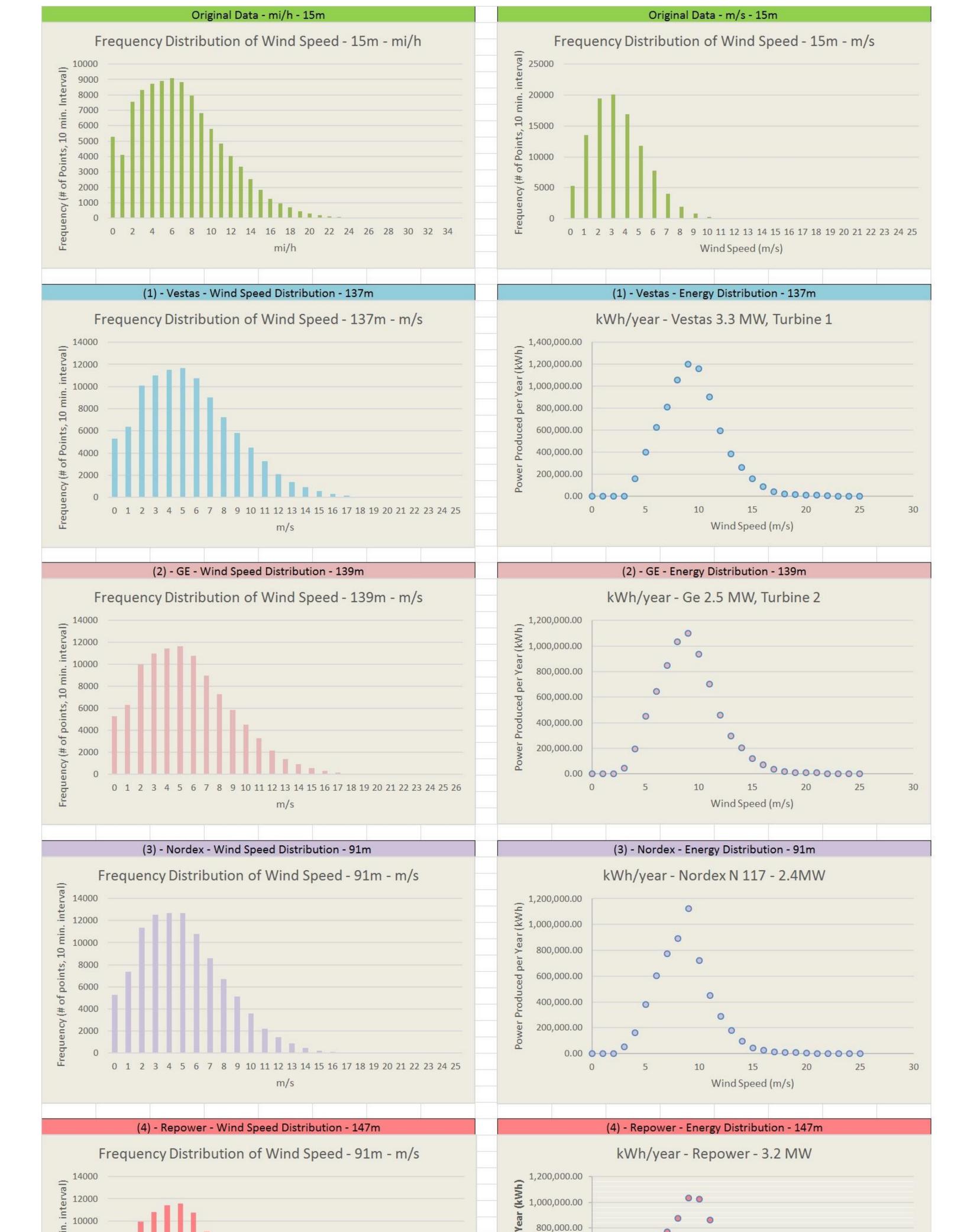
Turbine 5: GAMESA – G52 – 850kW 65m Tower

Equations

[1]
$$? \frac{mi}{h} = \left(\left(\frac{data\ value}{time\ period} \right) \times 0.857 \right) + 0.725$$

[2] Wind Speed at Hub Height =
$$\left(\frac{Hub \ Height}{Height \ of \ recorded \ data}\right)^{Environmental \ Constant} \times Wind \ Speed$$

8000


6000

3]
$$\frac{kWh}{year} = Power for wind speed \times \frac{Hours}{year} at wind speed$$

[4] Maintence cost per lifetime = Cost of Turbine \times 0.02

[5] $Cost\ of\ Turbine = \#\ of\ MW\ of\ Turbine\ \times 1,000,000$

[6] $Years \ to \ payoff = \frac{Total \ Turbine \ Cost}{Total \ Power \ Produced} \left[\frac{\$}{kW \ h/y \ ear} \right]}{Cost \ of \ Electricity} \left[\frac{\$}{kWh} \right]$

600,000.00

400,000.00

Wind Speed (m/s)

Results & Conclusion

In the table below, the results show how the different turbines would fare in the conditions at Cooper Farm. By the criteria of a turbine taking the least amount of time Turbine 4 would most fit that criteria, although Turbine 1 produces the most energy. The smallest and least expensive turbine, Turbine 5, is not a feasible option. The results show that just because a turbine gives the most energy does not mean it is most feasible.

Monetary Value			
Turbine	MW of Turbine	Cost of Turbine	Instillation Cost
1	3.3	3,366,000	500,000
2	2.5	2,550,000	500,000
3	2.4	2,448,000	500,000
4	3.2	3,264,000	500,000
5	0.85	867,000	250,000
Maintenance cost of life-	Total Cost of Turbine	Total Power in a year	\$/kWhr/year
time		(kWh/yr)	
66,000	3,932,000	7,917,526	0.497
50,000	3,100,000	7,192,548	0.431
48,000	2,996,000	5,827,897	0.514
64,000	3,828,000	7,374,531	0.519
17,000	1,134,000	1,074,734	1.055
Years to pay off	Money Saved by using turbine	Money saved after life	Power consumed on
	per year (After payoff)	time	campus annually
9.9	395,876	3,985,526	111,000,000

Sources

4,092,548

2,831,897

3,546,531

-59,266

Cost of Wind Turbine

Estimated by US per MW

1,000,000

Cost of Electricity

(\$/kWh)

0.05

[1] Wizelius, T. (2007). *Developing wind power projects*. London: Earthscan.

359,627

291,395

368,727

53,737

Life time of Wind Turbine

20 year life time

8.6

10.3

10.4

21.1

Percent of cost of

0.02

naintenance for lifetime